Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence.

نویسندگان

  • Tricia A Missall
  • Mary Ellen Pusateri
  • Maureen J Donlin
  • Kari T Chambers
  • John A Corbett
  • Jennifer K Lodge
چکیده

The ability of the fungal pathogen Cryptococcus neoformans to evade the mammalian innate immune response and cause disease is partially due to its ability to respond to and survive nitrosative stress. In this study, we use proteomic and genomic approaches to elucidate the response of C. neoformans to nitric oxide stress. This nitrosative stress response involves both transcriptional, translational, and posttranslational regulation. Proteomic and genomic analyses reveal changes in expression of stress response genes. In addition, genes involved in cell wall organization, respiration, signal transduction, transport, transcriptional control, and metabolism show altered expression under nitrosative conditions. Posttranslational modifications of transaldolase (Tal1), aconitase (Aco1), and the thiol peroxidase, Tsa1, are regulated during nitrosative stress. One stress-related protein up-regulated in the presence of nitric oxide stress is glutathione reductase (Glr1). To further investigate its functional role during nitrosative stress, a deletion mutant was generated. We show that this glr1Delta mutant is sensitive to nitrosative stress and macrophage killing in addition to being avirulent in mice. These studies define the response to nitrosative stress in this important fungal pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1.

Laccases are thought to be important to the virulence of many fungal pathogens by producing melanin, a presumed oxygen radical scavenger. A laccase in Cryptococcus neoformans has been shown to synthesize melanin and contributes to the virulence and the survival in macrophages of this fungal pathogen. One C. neoformans laccase gene, LAC1, previously called CNLAC1, has been extensively studied, a...

متن کامل

Enhancement of nitric oxide synthesis by macrophages represents an additional mechanism of action for amphotericin B.

Amphotericin B (AmB) enhanced nitrite synthesis by murine macrophage-like J774.16 cells in a dose-dependent fashion. This effect was retained in the presence of Cryptococcus neoformans capsular polysaccharide, a known virulence factor. AmB and anticapsular antibody increased nitrite synergistically. In all cases, AmB required gamma interferon; C. neoformans cells were unable to elicit nitrite, ...

متن کامل

Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway.

Glucuronoxylomannan (GXM) is the major component of Cryptococcus capsular polysaccharide, which represents an essential virulence factor for this yeast. Cryptococcus neoformans infections in immunocompetent rats are associated with inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by macrophages. This study demonstrates in vitro and in vivo that GXM promotes iNO...

متن کامل

Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions.

Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of ...

متن کامل

Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis

Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2006